

Setup details

Petite Fleur[®] & Schlee GmbH

Temperature range:	-40200 °C
Cooling power:	0.48 kW @ 2000 °C
	0.27 kW @ -20 °C
Heating power:	1.5 kW
Hoses:	2x1 m; M16x1 (#9608)
HTF:	Ethanol
Reactor:	0.5-litre un-insulated
	glass reactor
Reactor content:	375 ml M90.055.03
	(#6259)
Stirrer speed:	160 rpm
Control:	process

Unistat[®] petite fleur[®]

Cooling a 0.5-litre reactor to T_{min}

Requirement

This case study determines the minimum process temperature that can be achieved in a 0.5 litre Schlee glass jacketed reactor.

Method

The Petite Fleur was connected to the reactor using 2x1-metre M16 insulated flexible metal hoses. The HTF used was ethanol and the reactor was uninsulated.

Results

The graphic shows that the process can be cooled to a minimum of -35.7 °C with a corresponding jacket temperature of -36 °C. The rapid initial ramp rate of 3 K/min. slows as the cooling power asymptotes. The heat up time is extremely rapid in excess of 10 K/min.

