

Setup details

Unistat[®] 830 & Radleys reactor

Temperature range:	-85200 °C
Cooling power:	3.6 kW @ 0 °C
	2.2 kW @ -60 °C
	3.6 @ 0 °C
	3.5 @ -2040 °C
	2.2 @ -60 °C
	0.7 @ -80 °C
Heating power:	3 kW
Hoses:	2x1.5 m; M38x1.5 (#6656)
HTF:	DW-Therm (#6479)
Reactor:	10-litre jacketed glass
	reactor
Reactor contents:	7.5 litre M90.055.03
	(#6259)
Reactor stirrer speed:	80 rpm
Control:	internal

Case Study CS 63

Unistat[®] 830

Cooling the jacket of a Radleys 10-litre reactor to -85 °C

Requirement

The graphic shows a cooling curve from 20 $^{\circ}$ C to -85 $^{\circ}$ C connected to a Radleys 10-litre glass reactor.

Method

The Unistat and reactor are connected using two 1.5-metre insulated metal hoses. The reactor is filled with 7.5 litre of "M90.055.03", a Huber supplied silicon based HTF.

Results

This 2-hour test shows that the Unistat 830 can cool the "internal" (jacket) temperature to -85 °C with a resultant process temperature of -76 °C.

