

Petite Fleur

Petite Fleur controlling a 20 liters uninsulated jacketed reactor

Requirement

This Case Study demonstrates the control capabilities over the process temperature when a Petite Fleur is connected with a Chemglass 20 liters uninsulated jacketed reactor over the temperature range of $+20^{\circ}$ C to $+120^{\circ}$ C then to $+70^{\circ}$ C and back to $+20^{\circ}$ C.

Method

The 20 liters Chemglass uninsulated jacketed reactor was connected to Petite Fleur using 1-meter metal insulated hoses. The thermofluid used in the system was "DW-Therm". Process control was carried out via a Pt100 sensor located in the process mass. Stirrer speed was set to 100 rpm.

Setup details

-40°C+200°C
0.48 kW @ +20°C
0.45 kW @ 0°C
0.27 kW @ -20°C
1.5 kW
2*1 m metal insulated
DW-Therm
Chemglass 20-liters
jacketed reactor
M40.165/220.10
100 rpm
process
22°C

Results

1. Lowest achievable temperature (Tmin):

Under the test conditions, the minimum achievable process temperature was -13.5°C as can be seen in the graphic.

2. Performance:

The graphic shows the speed, accuracy and stability as the Petite Fleur reaches and maintains each new set point.

