

Ministat® 240

Ministat® 240 cycling a 20-liter jacketed reactor

Requirement

This Case Study demonstrates the lowest achievable process temperature and the process temperature control abilities of a Ministat 240 when it is connected with a Chemglass 20-litre reactor.

Method

The Chemglass 20-liter glass jacketed reactor was connected to Ministat® 240 using two 1-meter metal insulated hoses M24. The thermofluid used in the system was "DW-Therm". "Process" control was carried out via a Pt100 sensor located in the "process" mass. Stirrer speed was set to 100 rpm.

Setup details

Temperature range: -45°C...+200°C

Cooling power: 0.60 kW @ +20°C

0.55 kW @ 0°C

0.35 kW @ -20°C

Heating power: 2.0 kW

Hoses: 2*1 m metal insulated

HTF: DW-Therm

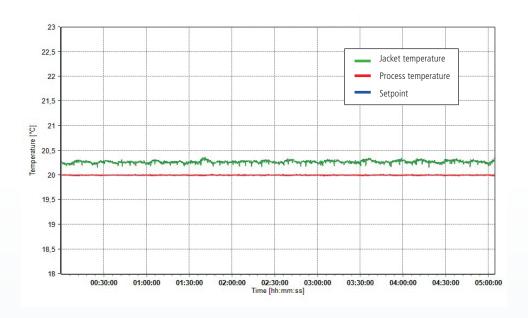
Reactor: Chemglass 20-liter glass

jacketed reactor

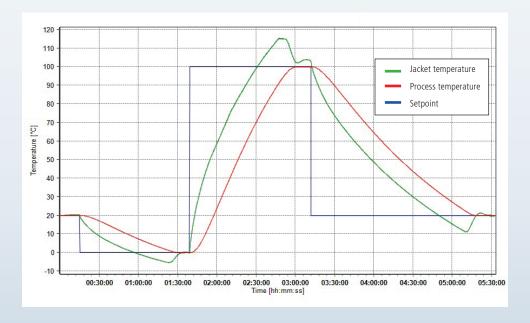
Reactor content: 15 I DW-Therm
Stirrer speed: 100 rpm
Control: process
Amb. temperature: +25°C

Results

1. Lowest achievable temperature (Tmin):


Once stable at +20°C under the "Process" control, a set point of -40°C is entered. The graphic shows that the lowest temperature achieved was -13.9°C.

2. Stability:


The graphic clearly demonstrates the stability of the process temperature as the Ministat 240 adjusts the jacket temperature to hold the process temperature stable at +20°C over a period of 5-hours

3. Performance:

The table and graphic data show the speed, accuracy and stability as each new set point is reached.

Start T	End T	Approximate time	Av. Ramp Rate
+20°C	0°C	84 minutes	0.2 K/min
0°C	+100°C	82 minutes	1.2 K/min
+100°C	+20°C	125 minutes	0.6 K/min

