

Unistat[®] petite fleur[®]

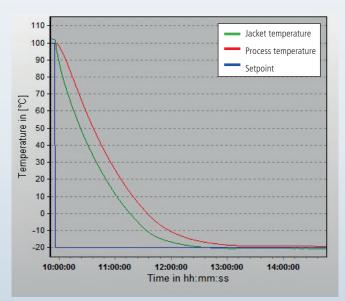
Petite Fleur[®] cycling a 6-litre De Dietrich jacketed reactor between +100°C and -20°C

Requirement

The Petite Fleur was designed to control the temperature in small reactors, typically 2 litre and below. However, as this case study shows, the thermal efficiencies of the Petite Fleur can be very effective on larger reactors. In this case study, a 6-litre glass jacketed reactor is used to demonstrate this ability.

Method

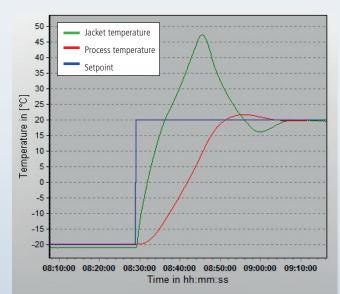
The reactor was filled with 5 litre of Huber's silicon based heat transfer fluid (HTF) "M20.195/235.20", the stirrer speed was set to 200 rpm. "Process" control was carried out via a Pt100 sensor located in the "process" mass.


Setup details

Temperature range:	-40°C+200°C
Cooling power:	0.48 kW @ +20°C
	0.48 kW @ +200°C
	0.45 kW @ 0°C
	0.27 kW @ -20°C
	0.16 kW @ -30°C
Heating power:	1.5 kW
Hoses:	M16x1; 2* 1 m
Thermofluid:	M90.055.03
Reactor:	De Dietrich
	6-litre jacketed reactor
Reactor content:	5 litre M20.195/235.20
Stirrer speed:	200 rpm
Control:	process

Results

Performance:


This graphic shows the Petite Fleur cooling the 6-litre reactor from 100°C to -20°C in approximately 3-hours. An impressive performance from our "baby"!

Temperature control:

This graphic shows the ramp-rate as the Petite Fleur heats the 6-litre reactor from -20°C to 20°C in a time of approximately 20 minutes...a ramp rate of 2K/min.

