## Case Study CS 101



# Unistat<sup>®</sup> 425

#### Controlling a simulated 100 W (86 kcal / hr) exothermic reaction

#### Requirement

This case study looks at the performance of a Unistat 425 as it controls a simulated 100 W (86 kcal / hr) exothermic reaction in a 2-litre DDPS reactor.

#### Method

The Unistat 425 is connected to the 2-litre DDPS glass reactor using two insulated metal 1-metre hoses. The reactor is filled with 1.5 litre of "M90.055.03", a silicon based HTF. An electric heater is immersed in the "process" and controlled to give a pre-determined power value.

#### Results

As soon as the "reaction" starts and raises the temperature of the process the Unistat cools the jacket to generate a wide  $\Delta T$  rapidly to remove the heat and bring the process temperature back to its set-point. The reaction is caught and controlled within 7 minutes. The heater is then turned off and the Unistat responds again by ramping the jacket to return and hold the process at its set-point

### Setup details

| Unistat <sup>®</sup> 425 & DDPS 2-litre reacted |
|-------------------------------------------------|
|-------------------------------------------------|

| Temperature range: | -40250 °C              |
|--------------------|------------------------|
| Cooling power:     | 2.5 kW @ 0 °C          |
|                    | 1.8 kW @ -20 °C        |
| Heating power:     | 2.0 kW                 |
| Hoses:             | 2x1 m; M24x1.5         |
|                    | (#9325)                |
| HTF:               | DW-Therm (#6479)       |
| Reactor:           | 2-litre jacketed glass |
|                    | reactor                |
| Reactor content:   | 1.5 litre M90.055.03   |
|                    | (#6259)                |
| Stirrer speed:     | 150 rpm                |
| Control:           | process                |



| 32<br>30<br>28<br>26                     | The heater is tu value of 100 W | rned "On" at a<br>(86 kcal/hr)                                                  | The heater is turned "Off" |                                                            | Jacket temper<br>Process tempe<br>Setpoint | ature<br>rature |
|------------------------------------------|---------------------------------|---------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------|--------------------------------------------|-----------------|
| 22                                       |                                 |                                                                                 |                            |                                                            |                                            |                 |
| 16<br>14<br>12<br>10<br>8<br>6<br>4<br>2 |                                 | The jacket-temperature i<br>rapidly cooled to "suck"<br>heat out of the process | is                         | eaction" is brought under<br>rature is exactly on its set- | control and the process<br>point           |                 |
| 0<br>-2<br>-4<br>-6<br>-8                |                                 |                                                                                 |                            | jacket ramps through 26 K<br>minutes                       | (21 °C-to-5 °C)                            |                 |
|                                          | 3:50:00                         | 03:55:00                                                                        | 04:00:00<br>Time in [hh:mi | <b>04:05:00</b><br>m:ss]                                   | 04:10:00                                   | 04:15:00        |